- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Louis, Sushil J (3)
-
Sengupta, Shamik (3)
-
Hand, Emily M (2)
-
Louis, Sushil (2)
-
Olla, Rita (2)
-
Barnes, Dustin (1)
-
Davis, Sara R (1)
-
Hand, Emily (1)
-
Houmanfar, Ramona (1)
-
Houmanfar, Ramona A (1)
-
La, Hung Manh (1)
-
Sehgal, Adarsh (1)
-
Toledo, William (1)
-
Ward, Nicholas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Olla, Rita; Houmanfar, Ramona A; Sengupta, Shamik; Hand, Emily M; Louis, Sushil J (, Behavior and Social Issues)
-
Sehgal, Adarsh; Ward, Nicholas; La, Hung Manh; Louis, Sushil (, Encyclopedia with semantic computing and robotic intelligence)
-
Toledo, William; Louis, Sushil J; Sengupta, Shamik (, IEEE)
-
Barnes, Dustin; Davis, Sara R; Hand, Emily M; Louis, Sushil (, Genetic and Evolutionary Computing Conference)We introduce a novel algorithm – ConvNEAT – that evolves a convolutional neural network (CNN) from a minimal architecture. Convolutional and dense nodes are evolved without restriction to the number of nodes or connections between nodes. The proposed work advances the field with ConvNEAT’s ability to evolve arbitrary minimal architectures with multi-dimensional inputs using GPU processing.more » « less
An official website of the United States government

Full Text Available